Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosensors (Basel) ; 12(12)2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2256287

ABSTRACT

Seeking optimized infectious pathogen detection tools is of primary importance to lessen the spread of infections, allowing prompt medical attention for the infected. Among nucleic-acid-based sensing techniques, loop-mediated isothermal amplification is a promising method, as it provides rapid, sensitive, and specific detection of microbial and viral pathogens and has enormous potential to transform current point-of-care molecular diagnostics. In this review, the advances in LAMP-based point-of-care diagnostics assays developed during the past few years for rapid and sensitive detection of infectious pathogens are outlined. The numerous detection methods of LAMP-based biosensors are discussed in an end-point and real-time manner with ideal examples. We also summarize the trends in LAMP-on-a-chip modalities, such as classical microfluidic, paper-based, and digital LAMP, with their merits and limitations. Finally, we provide our opinion on the future improvement of on-chip LAMP methods. This review serves as an overview of recent breakthroughs in the LAMP approach and their potential for use in the diagnosis of existing and emerging diseases.


Subject(s)
Biosensing Techniques , Communicable Diseases , Humans , Point-of-Care Systems , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing , Microfluidics , Molecular Diagnostic Techniques
2.
Adv Sci (Weinh) ; 9(9): e2105450, 2022 03.
Article in English | MEDLINE | ID: covidwho-1756533

ABSTRACT

Digital nucleic acid amplification tests enable absolute quantification of nucleic acids, but the generation of uniform compartments and reading of the fluorescence requires specialized instruments that are costly, limiting their widespread applications. Here, the authors report deep learning-enabled polydisperse emulsion-based digital loop-mediated isothermal amplification (deep-dLAMP) for label-free, low-cost nucleic acid quantification. deep-dLAMP performs LAMP reaction in polydisperse emulsions and uses a deep learning algorithm to segment and determine the occupancy status of each emulsion in images based on precipitated byproducts. The volume and occupancy data of the emulsions are then used to infer the nucleic acid concentration based on the Poisson distribution. deep-dLAMP can accurately predict the sizes and occupancy status of each emulsion and provide accurate measurements of nucleic acid concentrations with a limit of detection of 5.6 copies µl-1 and a dynamic range of 37.2 to 11000 copies µl-1 . In addition, deep-dLAMP shows robust performance under various parameters, such as the vortexing time and image qualities. Leveraging the state-of-the-art deep learning models, deep-dLAMP represents a significant advancement in digital nucleic acid tests by significantly reducing the instrument cost. We envision deep-dLAMP would be readily adopted by biomedical laboratories and be developed into a point-of-care digital nucleic acid test system.

SELECTION OF CITATIONS
SEARCH DETAIL